Elucidating the phase, composition and structural evolution of layered positive electrodes for battery applications using in situ diffraction

N. Sharma¹, D. Goonetilleke¹, E. Gonzalo², T. Rojo²,³

¹School of Chemistry, UNSW Sydney, Sydney NSW 2052, Australia
²CICenergigune, Parque Tecnológico de Álava, Albert Einstein 48, ED.CIC, 01510 Miñano, Spain
³Departamento de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box. 644, 48080 Bilbao, Spain

e: neeraj.sharma@unsw.edu.au

Electrodes account for a significant proportion of battery function, where atomic-scale perturbations or changes in the crystal structure during an electrochemical process permit the reversible insertion/extraction of charge carriers. In both lithium- and sodium-ion batteries, positive electrodes featuring a layered structure, with alternating charge carrier and transition-metal containing layers are found to deliver very good performance over a wide range of the electrochemical parameters. Our work has been focused on rationalizing the diverse range of the phases present, e.g. P2, O3, the compositions used, e.g. varied transition metal ratios, and the structural evolution, e.g. solid solution, two-phase, temperature and current-rate dependence, using a combination of in situ neutron and X-ray diffraction methods.

In this contribution, we focus on aspects such as current dependence in P2 Na₂/3Fe₂/3Mn₁/3O₂ and LiCoO₂, polymorphic influences on structure and properties in O3 and P2 Na₂/3Fe₂/3Mn₁/3O₂, charged state stability in Li(Ni₀.₄₂Mn₀.₄₂Co₀.₁₆)O₂, and the role of the composition in Li(NiₓMn₁₋ₓ)O₂ on structural evolution. Highlighted in Figure 1 are representations of the evolution of the layered stacking axis of Li(NiₓMn₀.₄₂Co₀.₁₆)O₂ with varying Ni:Mn:Co ratios and of P2 Na₂/3Fe₂/3Mn₁/3O₂ at different current rates. Both the magnitude of change and the appearance/disappearance of reflections detail the result of charge-carrier insertion/extraction. Such studies allow us to explore the structural and electrochemical parameter space that underpin performance.

Figure 1. The 2θ position of the 003 stacking axis reflection of Li(NiₓMn₀.₄₂Co₀.₁₆)O₂ during discharge-charge as the Ni:Mn:Co ratio is varied (left) and a waterfall-type plot of the 002 reflection of P2 Na₂/3Fe₂/3Mn₁/3O₂ at different current rates.